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An extension of space and time is presented whereby a point particle can 
oscillate into the immediate past and future. Rapid oscillation implies that the 
particle is seen at, or represented over, each point in time a large number of 
times, each representation being associated with a different phase of the oscilla- 
tion. Each cycle gives rise to an unavoidable drift from the particle's original 
position and hence the particle representations are scattered about the original 
position. Many such models of particle dynamics are possible and have implica- 
tions for the interpretation of quantum mechanics and the conception of nonre- 
alistic, nonlocal theories. 

1. I N T R O D U C T I O N  

Some of the conceptua l  diff icult ies arising f rom the qua n tum theoret ic  
descr ip t ion  of  par t ic les  as quan ta  that  in teract  at poin ts  while p ropaga t ing  
in a wavel ike fashion have led many  authors  to quest ion the adequacy  of  
local Eucl idean  space- t ime as s tar t ing poin t  for k inemat ics ;  see (Bastin, 
1971) for a select ion of such views. In this art icle the relevance of macro-  
scopic  Eucl idean  t ime to the descr ip t ion  of microscopic  par t ic les  is ques- 
t ioned.  By al lowing a po in t  par t ic le  a degree of  t empora l  independence  we 
present  a k inemat ics  for microscopic  par t ic les  that  al lows 

i. in terac t ion  at a poin t  with a defini te  momen tum,  
ii. p ropaga t i on  of the par t ic le  without  a uniquely def ined pos i t ion  or  

momen tum,  and 
iii. most  convenient  descr ip t ion  of  the dynamics  by a complex-va lued  

funct ion with proper t ies  s imilar  to those of the Schr rd inger  wave 

function.  
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Thus we present a hidden variable theory based on a kinematics that is 
nonlocal and nonrealistic in the sense of the Einstein, Podolsky, and Rosen 
theorem (Clauser and Shimony, 1978; Ballentine, 1970). 

The discussion in this paper is confined to the nonrelativistic kine- 
matics of a point particle with mass and without spin. 

2. THE TIME-OSCILLATING PARTICLE 

The usual topological model of space and time is locally R 4, R the real 
numbers. In the rest of this article we denote the time axis by T. 

The usual (mathematical) concept of "now" or "the present" is a real 
number t ~ T. Thinking of t as a Dedekind cut dramatizes how insubstantial 
this "present" is. We assume that such a concept has little relevance to the 
way a subatomic particle exists; that a measure zero "now" does not 
describe the time a particle "resides" in. Suppose that a particle oscillates 
into the near future and the near past; then, depending on the rate of 
oscillation it crosses "the present" a number of times. If space in the 
future /pas t  is loosely connected with space "now" it can be imagined that a 
particle drifts from its original position with each cycle of its oscillation. 

The simplest example of this oscillation in time, this temporal dy- 
namics, is a particle with its own time t' (a real number) related to 
macroscopic time t E T by 

t ' = t +  Asin~t  

A and v being dynamical properties depending on the particle. For a given 
time toe  T this particle "appears at" or "passes through" t o whenever t '=  t o 
which has a set of solutions 

R ( t o ) =  (x l t  o = x  + Asinl, x}. 

For each x E  R(to) the particle can be thought of as being present at t o and 
x is said to correspond to a representation of the particle at t o. The drift 
phenomenon separates these representations and so the particle appears at 
t o in up to card( R( t0 )) places, where card(X) is the cardinal number of the 
set X. It is easily shown that for t o >i ~r/2p + A card(R( t0) )=  1 +[2A u/Tr], 
(the square brackets being the integer part). 

The more energetic the particle the more "particlelike" it becomes and 
the less dispersed it is. This suggests making A, the maximum difference 
from "the present" and the parameter determining the amount of drift, 
dependent on the energy of the particle. Thus the greater the energy the 
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smaller A and the more the particle is confined to macroscopic time. If u is 
identified with the frequency of the de Broglie wave of the particle then it is 
suggestive to set A ---- K- h/2m, where m is the mass and K is a constant. (If 
m is in kilograms and K = l m2/sec 2 a low-energy electron has about 10 t~ 
representations with A being about 10 -5 sec.) K is a new, unknown, 
constant. 

When a particle interacts it does so at a point on its trajectory through 
space and time. In the case of absorption this destroys the generation of 
further representations and we experience the "collapse of i f"  phenomenon. 
Previous to interaction position and momentum can only be ascribed to the 
individual representations and none of these can be measured without 
interaction. When the particle interacts it does so with a given position and 
momentum. The cardinality of R(t)  gives a measure of the dispersion of 
momentum and position and hence a measure of the degree of "nonrealism." 

Time travel is fraught with problems, and the violation of Einsteinian 
causality is one of them. In the model presented here a particle can interact 
before it is emitted and at a different place from the point of emission; if a 
particle is emitted at t o, R(t) can be nonempty as early as t o --(A -- 7r/2v). 
R(t) can also remain nonempty for a time 2A after a particle has been 
absorbed, giving "~k" something of a life of its own. 

3. INTERACTION OF THE REPRESENTATIONS 

Let R ( t ) =  (a(t,  z)lzE R(t)) be the set of representations at t E T. We 
define the phase of a representation a(t, z ) E R ( t )  to be exp(i~z) and write 
it as ~(a( t ,  z)) or ~(a)  when the context is clear. 

It is assumed that the probability of detecting a particle in a small 
volume V at tog T depends not only on the probability of representations 
being present in V at t o but also on the phases of the representations. The 
phases contribute an (unnormalized) factor 

aK(,,Z~)EV[exp(iuZk)]I 

(vector addition in C, the complex numbers). 
This assumes that summing the phases within V has some physical 

meaning. The probability that two representations coincide is vanishingly 
small, which implies that either phase is irrelevant or the phases of represen- 
tations a small distance apart can be summed in some fashion. If we wish to 
describe the spatial distribution of R(t) by a smooth probability distribution 
then it is also desirable to have a smooth phase function. This phase 
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function will have a more obvious relevance to the physical state if phases of 
representations have a nonlocal effect. Precisely: if a l, a 2 E R(t)  and d(a 1, a 2 ) 
is the distance between them, the effect of q~(a 2) on q~(a~) at a~ is to give a 
total phase 

Co(a,)+ 7(d(a , ,  a2), m).~b(a2) 

where m is particle mass and 7 is a smooth, positive real-valued function 
such that 7 ( 0 , m ) = l  and 7 ( d , m )  decreases as d increases. ~, is thus a 
kinematical property associated with phase. 

The 7 function may seem an odd addition to the theory. Nevertheless, 
the reasons for its introduction would hold for all classes of theories wherein 
a point particle has an associated phase and interference occurs. It may of 
course be hidden in the measure theory at the basis of the mathematical 
formalism of the physical theory. In quantum mechanics 7 does not appear 
as the complex field + is not taken to represent the actual location of 
particles; it does not measure concentration. 

4. PARTICLE DYNAMICS 

Let q ( a ) G R  3 be the position of a representation a G R ( t ) ,  a(t, x)  is 
said to vanish at t o if for any e > 0  (x + e )+  Asin u(x + e )<  t~ for all t~ > t 0. 
In a similar way we can define the idea of representations "appearing." 

Assume that each representation follows a course q(a(t, z)) that can be 
regarded as that of a particle subject to Brownian motion. The source of this 
random motion is taken to be the intrinsic looseness of space-time structure 
away from "'the present." This can be incorporated in a fluctuating or 
ill-defined metric. The derivation of the SchrOdinger equation from the 
nonlinear description of a classical particle with mass, subject to Brownian 
motion and with a diffusion coefficient h / 2 m  and no friction (Nelson, 
1966) allows us to assign a wave function ~b, a solution to SchrOdinger's 
equation with a potential V, to each representation over its lifetime. 
Following E. Nelson we put +a = e x p ( R a  + iS~), where R~ = �89 In P~, with Pa 
the probabili ty density of q ( a ) =  q(a(t, z)) and h grad S~ = m-va, v~ being 
the "current velocity" resulting from the influence of the potential V. By the 
arguments of the previous section, the state of the representations at t E T 
can be described by 

+= E+o 
aCR(t) 

The appearance and disappearance of representations means that q~, as 
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given, does not satisfy Schr6dinger's equation over time intervals greater 
than 2A. If we replace % by H ( t l ) - H ( -  t2). q, ~, where (t I, t2) is the lifetime 
of a and H(t)  is the Heaviside function, 4' becomes a Schwartz distribution 
satisfying the Schr6dinger equation except on a set of measure zero. 

An alternative, though similar, approach is to regard the set of rep- 
resentations at any one time as an ensemble of particles subject to Brownian 
motion. If p is the mean density of the particles and + =exp(R + iS) with O, 
~, R, S, and v having the same relation as p~, %, R~, S~, and v~ above, then 
~, satisfies the Schr~Sdinger equation (Rylov, 1971). In this case all the 
representations constitute a type of gas--very appropriate for the picture of 
an ensemble propagating but a single particle interacting. 

5. FORMAL S C H E M E  FOR KINEMATICS 

In this section we crystallize the novel aspects of the kinematics 
suggested in the previous sections and present a formal scheme that allows 
us to generalize the model of a particle given above. 

Let L be a metric space, called the level space, that is a group and acts 
on T so that there is a map + :  L • T--* T. Furthermore there is an im- 
bedding j: T ~  L. A "space-time scheme" has the following ingredients: 

i. A map f: T---. L that factors through S I=  (z]z C,lzl= 1}, so there 
exists maps O ( f )  and @(f )  such that 

T O ( f )  - S  l 

! o ( f )  

commutes. 
ii. A map R ( f ) :  T-~ f t e (T)=se t  of finite subsets of 7". R ( f ) ( t  o) is 

defined as {tit o = t + f ( t ) )  
iii. Let P = ~ 3 • L as a topological space; then the particle's position 

in P is described by a stochastic process X: T--. P such that 
proj2.X= f (where proji is the projection of the ith factor of a 
product). 

Given (i), (ii), and (iii), the description of the particle's motion is 
pushed back into T and R 3 by using the map F:t~(proj i (X( tk)) l tkE 
R ( f ) ( t ) }  from T to fte(R 3) together with (OP(f)(tk)]tk~ R ( f ) ( t ) }  = z(t) 
so giving the complete, ontological, description of the particle in T and R 3. 
Replacing F and Z with what can be known gives ~. 
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The maps + a n d j  are introduced for reasons of generality; there is no 
reason to assume that the space giving lhe extra degree of temporal freedom 
that a particle experiences is homeomorphic to T. In the account already 
given L = R ,  f =  A sin ut, and ~(f)(t)=expi~t. The particle's motion has 
been described by the stochastic process X(t) but it can be imagined that a 
random motion arises from a deterministic process in an undetermined 
metric, that is the metric properties of P are given by a function D: 
P • P --* I~ + known only by the relationship 

]D(x, .v)- d(x, y)[<~(IProj2(x)- proj2(y)] ) 

where d is the ordinary product metric and ~(z) is a function that increases 
with z and ~(0)=0. In this way uncertainty is firmly imbedded in the 
structure of space and time with D, not d, having physical relevance. 

The space-time scheme given above can be extended to give a relativis- 
tic kinematics by expressing f, ~( f ) ,  R(f),  and X as functions of proper 
time. In this case T •  is replaced by M X L ,  M being R 4 with the 
Minkowski metric and the domain of f ,  ~ ( f )  R ( f ) ,  and X is the set of 
orbits of the action of the proper (de t=  1) Lorentz transformations on M 

[equivalently the set {~-]t 2 -]x]2/c 2 = "r2,(t, x)E M) in obvious notation]. 
A Lorentz transformation ~: M ~ M extends to E: M X L ~ M )< L given 
by E(x, t ) = ( C ( x ) ,  I/S), where/~ =cos  c~, a being the rotation about a fixed 
vector that gives ~.. Thus the extension of action of the Lorentz group to 
M • L restricts the possible choices of L; multiplication by a real number 
must be possible in L and this along with other properties makes it a vector 
space. 

As it is not our purpose to develop a relativistic theory here, we go no 
further than the above sketch. 

6. CONCLUSION 

We have presented a fragment of a hidden variable theory that ap- 
proaches quantum mechanics in some of its properties. Essentially it is a 
variant of the stochastic interpretation of quantum mechanics (Mari6 and 
Zivanovir, 1976), but it differs radically in the way it involves "temporal" 
dynamics and so incorporates phase and in the novel aspect of represen- 
tations of a particle. Furthermore, phase has a clear physical meaning and 
S I can be seen as the phase manifold for "temporal" dynamics. The theory 
suggests that the concept of a "nonrealistic" theory is open to further 
analysis. By changing the concept of a particle's time we have given a 
finitely nonrealistic theory, the degree of nonrealism being the upper bound 
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of c a r d ( R ( f ) ( t ) )  in any physical configuration. Clearly stronger degrees of 
nonrealism include a countable range of position and momenta per particle, 
a continuous range, and finally "anything"; that is, any position and 
momentum is possible during propagation. This last case is clearly the case 
of maximum ignorance but is not as strong as the assertion that these 
parameters have no meaning until "measurement" takes place: "semantic" 
nonrealism. 

The theory given in this paper refers only to particles with nonzero 
mass. Its extension to photons depends on finding a suitable A that does not 
grow too quickly with diminishing energy; longwave and hence scattering 
by large objects seems to imply that A is large. This leads to the physical 
system seemingly anticipating the starting up of, say, a radio wave trans- 
mitter. It is interesting to speculate on how such a phenomenon would have 
been interpreted without regard to temporal oscillation. The interpretation 
of this anticipation in the case of the electron is obscured by the extent of 
the phenomenon, the value of the constant K, if it is indeed a constant, and 
whether the number of representations is to be large, small, variable, or 
constant. Including spin into the theory could resolve some of these ques- 
tions by altering the nature of the level space. Alternatively an attractive 
solution might be to replace f: T - ,  L with a strictly positive function, such 
as Asin2ut in our example [taking positive to mean t + f ( t )  >- t]. In this case 
antiparticles can easily be conceived as having f ( t )  replaced by - f ( t ) .  
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